An Ordering Algorithm for Exposing Parallelism in Sparse

Symmetric Matrices

Aram K. Kevorkian

TR 1697
May 1995

Navat Command, Controf and
Ocean Sunveillance Center
RDT&E Division

San Diego, CA
H2162-5001

DTIC
ELECTE
0CT 0 61995

9951004

DTIC QUALITY IN, SPECTED 8

Authorized for public release; distribution is unlimited.




Authorized for public release; distribution is unlimied.




Technical Report 1697
May 1995

An Ordering Algorithm for
Exposing Parallelism in
Sparse Symmetric Matrices

Accesion For

. NTIS CRA&I
Aram K. Kevorkian DTIC  TAB g
O

Unannounced
Justification

By

Distribution |

Availability Codes

. Avail and/or
Dist Special

-




NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER
RDT&E DIVISION
San Diego, California 92152—-5001

K. E. EVANS, CAPT, USN R. T. SHEARER
Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

This report was sponsored by the Office of Chief of Naval Research and performed under
the NRaD Independent Research Program, project ZW62.

Released by Under authority of
R. H. Hearn, Head P. M. Reeves, Head
Senior Technical Staff Analysis and Simulation
Division
ACKNOWLEDGMENTS

The author would like to express his sincere thanks to Dr. Michael Saunders for providing
the sparse symmetric matrices from the linear and quadratic programming applications, and to
Curt Goodhart at NRaD for his help in getting the Harwell-Boeing sparse matrix problems
into Matlab. The author would also like to thank Dr. Michael Heath and the referees for
constructive and helpful suggestions.

LH




EXECUTIVE SUMMARY

OBJECTIVE

Given a sparse symmetric matrix M, we develop an ordering algorithm to find a permutation
matrix P so that parallelism inherent in M is fully exposed in the matrix PMPT.

RESULTS

An ordering algorithm with the following key stages was developed. First, compute in the undi-
rected graph G = (V, E) of M a set of vertices S™ such that the induced subgraph G(V — S*) contains
parallel regions inherent in M. This stage gives rise to a block diagonal matrix A such that each diag-
onal block is a full matrix in M. Second, factor block diagonal matrix A symbolically and compute
the symbolic form of the Schur complement of A in M. Third, replace original matrix M by the sym-
bolic Schur complement, and repeat the process until the symbolic Schur complement is a full matrix.
By a property of the set S*, the ordering algorithm takes advantage of all principal submatrices of M
that do not produce fill-in in any part of M when symbolically factored.

CONCLUSIONS

For a sparse symmetric matrix M, we have presented an ordering algorithm to compute a permuta-
tion matrix P so that parallelism inherent in M is fully exposed in PMPT. The application of the new
parallel ordering algorithm to a large set of sparse matrices taken from the Harwell-Boeing sparse
matrix collection and industrial linear and quadratic programming problems show that this algorithm
is an effective tool for exposing parallelism in arbitrary sparse symmetric matrices. Our experiments
also show that the new parallel ordering algorithm compares favorably with a highly refined imple-
mentation of the minimum degree method in keeping the number of fill-ins and elimination tree
heights small.
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1. INTRODUCTION

A central problem in the solution of large sparse symmetric positive definite systems of equations
Mx=b

is finding a permutation matrix P such that PMPT has a sparse Cholesky factor. The pivotal impor-
tance of the permutation matrix P in the total solution of the symmetric system of equations Mx =b
has led to several highly successful and widely used sparse matrix ordering methods. These include
the nested dissection method (George & Liu, 1981, minimum degree ordering (George & Liu, 1981,
1989; Liu, 1985) and band and envelope reduction methods (George & Liu, 1981).

With the arrival of parallel architecture machines in the mainstream of advanced scientific comput-
ing, the main objective of permutation matrix P has been expanded so that the Cholesky factor of
PMPT is not only sparse but also suitable for parallel computation. The most popular notion used to
date for the parallel ordering problem is that of the elimination tree associated with a Cholesky factor
(Liu, 1986; Schreiber, 1982). The key role of the elimination tree model in the parallel ordering
problem is to find a sparse Cholesky factor whose elimination tree has small height. Liu (1989) has
described a two-stage method that accomplishes this objective by combining minimum degree and
nested dissection orderings. Pothen, Simon, and Wang (1992) have recently reported a two-stage
method (Liu, 1989) that accomplishes this task by combining minimum degree and nested dissection
orderings. Pothen, Simon, and Wang (1992) have recently reported a spectral nested dissection algo-
rithm that recursively uses a spectral separator algorithm to compute parallel orderings. A compre-
hensive survey covering parallel algorithms for sparse matrix computations through 1990 is given by
Heath, Ng, and Peyton (1991).

In this report, we present a new ordering algorithm that recursively uses a four-stage paralleliza-
tion tool to compute a permutation matrix P such that PMPT has a sparse Cholesky factor and is suit-
able for parallel computation. Letting G = (V, E) denote the undirected graph of the sparse symmetric
matrix M, the four key stages of the parallelization tool are as follows:

1. Compute the set of vertices S = {v e V13 (v,w) € E with deggv > deggw};
2. Compute connected components of induced subgraph G(V - S);

3. Classify the clique connected components of G(V - S);
4.

Compute independent cliques in nonclique connected components of G(V - S).

Through these four stages, we obtain a set of vertices S*, where S ¢ S*, such that the induced sub-
graph G(V — S*) contains parallel regions inherent in M. In matrix terms, the set of vertices S* gives
rise to a block diagonal matrix A such that each diagonal block is a full matrix in M. At this point,
block A is factored symbolically to compute the symbolic form of the Schur complement of A in M.
Lastly, the original matrix M is replaced by the symbolic Schur complement, and the process is
repeated until the symbolic Schur complement is a full matrix.

The construction of the vertex set S in stage 1 forms the most novel and crucial piece of the paral-
lelization tool. To highlight a key property of the set S, consider any clique in G with vertex set U,
and suppose we partition U into two disjunct parts U’ and U’’ such that U’ = {u | deggu < deggv for
all v e U}. We call the set of vertices U’ the core of clique G(U), and for the special case where a
vertex u in U’ satisfies the equality deggu = Ul — 1, we call U’ the interior of G(U) and the induced
subgraph G(U’) an interior clique. The matrix interpretation of an interior clique makes this subgraph




of G of some interest. To highlight this, let G(U) be any interior clique in G and let A be a principal
submatrix of M corresponding to G(U). Then the symbolic factorization of submatrix A does not
produce fill-in in any part of matrix M.

As a corollary to a decomposition result, we show that every interior clique in G is a connected
component of the induced subgraph G(V — S), and so the first two stages of the parallelization tool
isolate every principal submatrix that preserves sparsity in the process of symbolic factorization.
Stage 3 deals with the connected components of G(V — S) that are cliques, while stage 4 deals with
the connected components that are not cliques. Stage 3 classifies the noninterior cliques in G by
using an interior clique as the clique of choice. Stage 4 exploits the underlying structure of a non-
clique connected component. The total time required by the four-stage parallelization tool is propor-
tional to the number of vertices and number of edges of G.

This report is organized as follows. In section 2, we cover the necessary graph-theoretic notation.
In section 3, we give a concise formulation of the four-stage parallelization tool. In section 4, we for-
mulate a new parallel ordering algorithm that recursively employs the four-stage parallelization tool
until no sparsity is left for exploitation. In section 5, we give high-level implementations of the key
procedures used in the new ordering algorithm. In section 6, we evaluate the time complexity of the
new ordering algorithm and compare it with two commonly used ordering methods implemented in
the linear algebra package Matlab (The Mathworks, 1990). The benchmark for the comparisons com-
prises a set of 21 sparse symmetric matrices drawn from the Harwell-Boeing sparse matrix collec-
tion (Duff, Grimes, & Lewis, 1989) and from applications of linear and quadratic programming to
industrial problems (Saunders, M. A., private communication, 1992-1993). Conclusions are pres-
ented in section 7.

2. NOTATION

A graph G = (V, E) consists of a finite, nonempty set of vertices V ard a set of edges E. If the
edges are ordered pairs (u, v) of vertices, G is said to be directed. If the edges are unordered pairs of
vertices, also denoted by (u, v), G is said to be undirected. All graphs in this work are assumed to be
undirected and connected. For a subset U of the vertex set V, the induced subgraph G(U) of G is the
subgraph G(U) = (U, E(U)) where

EU)={(uwv)e Elu,ve U}.
A set of vertices S is called a separator of G if G(V — S) is not a connected graph.

In a graph G = (V, E), a vertex v is said to be adjacent to another vertex w if (v, w) is an edge in E.
The set

adjgv={we V- {v}i(v,w)e E}

denotes the set of vertices adjacent to v. We call the set adjgv the adjacency of v in G. The degree of
vertex v, denoted by deggv, is the number of vertices adjacent to v and so we have deggv = ladjgvl.
An induced subgraph G(U) of G is called a clique if each vertex in U is adjacent to every other ver-
tex in U. A clique is maximal if it is not a proper subgraph of another clique. For any graph G = (V,
E), a vertex partition is called a clique partition if each element of the partition induces a clique. A
vertex v is called simplicial (Dirac, 1961; Lekkerkerker & Boland, 1962) if the subgraph of G
induced by the adjacency of v is a clique.




For any n-by-n structurally symmetric matrix M, there exists an undirected graph G = (V, E) such
that vertex v; in V represents row i of M, and the edge (v, v;) is in E if and only if the element in the
@i, j) location of M is nonzero for all i #j. Another representation for graph G is by means of vertex
partitions. For any vertex partition IT1 = (V, Va, ..., Vi) in G, Gy = (V1 , Epp) is a graph such that
each element V; of the partition is a vertex in Vpy, and the pair (V;, V;) is an edge in Eyy if and only if
a vertex in the set V; is adjacent to a vertex in the set V;. George and Liu (1981) call Gy a quotient
graph of G with respect to IT .

Suppose G = (V, E) is the undirected graph of the n-by-n symmetric matrix M, and let v denote the
vertex in V representing the ith row of M. Then the set of edges defined by

defgv = {(u,w) lu, w € adjgV, (u,w) ¢ E, u=w}

corresponds exactly to the fill-ins produced when the ith component of the vector x in the system of
equations Mx = b is eliminated from the original system (assuming no cancellation of nonzero ele-
ments). The set of edges defgv is called the deficiency of v in G (Rose, Tarjan, & Lueker, 1976). The
graph G, = (V - {v}, E(V - {v}) U defgv}, obtained by adding the deficiency defgv to the induced
subgraph G(V — {v}), is precisely the undirected graph of the (n — 1) by (n — 1) coefficient matrix in
the reduced system of n — 1 equations. The graph G, is called the v-elimination graph of G (Rose,
Tarjan, & Lueker, 1976). The first graph-theoretic characterization of Gaussian elimination on sym-
metric matrices is due to Parter (1961).

3. ATOOL FOR EXPOSING PARALLELISM IN SPARSE
SYMMETRIC MATRICES

We begin by developing a graph-theoretic method for exposing parallelism in general sparse sym-
metric matrices.

For any set of vertices U in G = (V, E), let 8(U) denote the minimum degree among the vertices in
Uor
O(U) = min deggu .

ue U

Using the parameter d(U), we define the core of a clique G(U) to be the set of vertices cor(U) given
by

cor(U) = {u € Uldeggu = &U)}.

The core of a clique G(U) thus partitions the vertex set U into two disjunct parts, cor(U) and U —
cor(U), so that all vertices with local minimum degree &(U) are contained in cor(U). The significance
of this partition will become apparent when we elaborate on the special case where d(U) attains its
smallest value in G.

Since G(U) is a clique, we have &(U) > Ul - 1, and so the smallest value §(U) can take in G is |Ul
— 1. To accommodate this special case, let us define the interior of the clique G(U) to be the set of
vertices int(U) given by

int(U) = {ue Uldeggu=IU0l-1}.




The core and interior of a clique G(U) are thus identical if and only if 6(U) = [Ul - 1. If this equality
does not hold, then G(U) is a clique with an empty interior and a nonempty core. In the case that
G(U) is a clique with a nonempty interior, we call the subgraph induced by the interior of the clique
G(U) an interior clique.

The interior of a clique has properties that are ideally suited for preserving sparsity in sparse
matrix computations and for exposing parallelism in matrices with regular and irregular structures.
We will briefly outline these two properties and then present the main r2sult in this work.

Let G(U) be any clique in G = (V, E) with a nonempty interior and I=t v be any vertex in int(U).
Then deggv = IUl - 1, and so all vertices adjacent to v are in U since G(U) is a clique. Thus, vis a
simplicial vertex, and so an interior clique is simply a clique in which every vertex is simplicial.
From this property of an interior clique, it follows that if M is a symmetric matrix with the undi-
rected graph G, then the symbolic factorization of the submatrix of M corresponding to G(int(U))
will not give rise to fill-in in any part of matrix M. In other words, the sparsity of M is fully pre-
served when a submatrix of M corresponding to an interior clique in G is symbolically factored. This
highlights the first of two key properties exploited in our parallel ordering algorithm.

Since all vertices adjacent to any vertex v in int(U) are in U, the induced subgraph G(V — (U -
int(U)) is a disconnected graph with at least two connected components. The imerior clique
G(int(U)) forms one component while G(V — U) or some subgraph of G(V — U) forms the other.
From this observation, we can conclude that the set of vertices defined by

ext(U) = U — int(U)

is a separator of G. This leads us to a property of interior cliques ideally suited for exposing parallel-
ism in sparse symmetric matrices.

Lemma 1. Let S be the set of all simplicial vertices in any undirected graph G = (V, E). Then, each
connected component of G(S) is an interior clique.

For the case where G is a chordal graph, this result was first established by Jess and Kees (1982).
The proof that Lemma 1 holds for any undirected graph can be found in Kevorkian (1993).

We now establish a decomposition result that leads to a separator S such that all interior cliques in
G = (V, E) are connected components of the induced subgraph G(V —S). The set of vertices S is then
used to formulate a four-stage graph-theoretic method for exposing parallelism in general sparse
symmetric matrices.

Theorem 1. Let I1=(Vy, V,, ..., V) be any clique partition in the graph G = (V, E). Then, for any
clique G(U) in G, the following relation holds:

k
int(U) € U cor(V)).

i=1

Proof. If G(U) is a clique with an empty interior, there is nothing to prove. Suppose G(U) is a
clique with a nonempty interior, and let Wy denote the union of vertex sets cor(V) through cor(Vy).
Assume for contradiction that the assertion in the theorem does not hold. Then we get int(U) n (V -
W) # 9, and so for some element V; of IT we have int(U) n (V;— cor(V})) # &. Let u be any vertex in
int(U) n (V- cor(V;)) and let v be any vertex in cor(V;). Then we have v € V;, and so every vertex




in V; — {v} is adjacent to v. This means that vertex u e int(U) is adjacent to v since u is in V;. So we
get V; c U since any vertex adjacent to a vertex in int(U) must be in U. Now one of the following
two cases must hold. Case 1: v e int(U). Then we get deggu = deggv since both u and v are in int(U).
But since u € V;—cor(V;) and v € cor(V;), we have deggu > deggv and a contradiction. Case 2: v ¢
int(U). Then v e U —int(U) since v is in Vjand V; c U. Thus we get deggu < deggV since u € int(U)
and v € U —int(U). But since u € V;— cor(V)) and v € cor(V;), we have degcu > deggv and a contra-
diction. This completes the proof.

Since each edge of a graph G = (V, E) forms a clique, consider the case wherc an element V;of a
clique partition IT in G corresponds to an edge (v, w) such that deggv # deggw. Then, by Theorem 1,
we conclude that the vertex with the strictly larger degree in the set V;= {v, w} can never be part of
any interior clique in G since cor(V;) will exclude this vertex. This simple interpretation of Theorem
1 leads to a separator S such that all interior cliques in G are connected components of induced sub-
graph G(V - S).

Corollary 1.1. Let S be the set of vertices in G = (V, E) defined by
S={ve VI3 (v,w) e E with deggv > degcw}.
Then every interior clique in G is a connected component of G(V - S).

Proof. Let G(U) be any clique in G with a nonempty interior. Then int(U) n S must be empty if the
assertion of the corollary holds. Assume for contradiction that int(U) NS is nonempty, and let v be
any vertex in int(U) N S. Then there exists an edge (v, w) in E such that deggv > deggw since v € S.
Let U = {v, w}. Then G(U) is a clique in G with cor(U) = {w} since deggw < deggv. Now let IT be
any clique partition in G with U in IT. Then, by Theorem 1, we have int(U) c Wyy, and so v is in Wy
since v e int(U). But this is a contradiction since v ¢ cor(U). Thus int(U) n S is empty, which means
that the interior clique G(int(U)) is a subgraph of G(V - S).

Assume for contradiction that G(int(U)) is not a connected component of G(V — S). Then ext(U) n
(V = S) must be nonempty since no vertex in int(U) is adjacent to a vertex in V — U. Let v be any
vertex in ext(U) n (V - S), and let u be any vertex in int(U). Then there exists an edge (u, v) in E
with deggv > deggu since u € int(U) and v e ext(U). As aresult, we have v € S, which is a contra-
diction since it was assumed that v e V — S. This completes the proof.

Corollary 1.1 motivates a four-stage parallelization tool for exposing parallelism in sparse sym-
metric matrices. The four stages are:

Compute the set of vertices S;

Compute connected components of induced subgraph G(V - S);

w N

Classify clique connected components of G(V - S);

4. Compute independent cliques in nonclique connected components of G(V — S).

Through these four algorithmic stages, we arrive at a vertex partition
ITr=(Vy,Vy ..., V, 8,
where

Sc S,




satisfying the following three properties:
(a) For any two distinct sets V; and V;, no vertex in Vj is adjacent to a vertex in Vj;
(b) For any set V;, G(Vj) is a clique in G;
(c) The interior of any clique in G is an element of the vertex partition.

By property (a), condensation of G with respect to IT*is a graph with root vertex S* and leaf ver-
tices V; through V; .We will refer to the leading r elements of vertex partition IT" as its leaf elements.
Figure 1 illustrates condensation of G with respect to IT". The shape of the graph in figure 1, com-
bined with properties (b) and (c), forms the basis for our parallel ordering algorithm.

Figure 1. Condensation of G with respect to vertex partition IT".

4. A PARALLEL ORDERING ALGORITHM DERIVED FROM VERTEX
PARTITION IT*

Let M be any symmetric matrix with undirected graph G = (V, E). By property (a) of vertex parti-
tion IT, there exists in M an r-by-r block diagonal matrix A with diagoual blocks A; through A, such
that block A; corresponds to induced subgraph G(V;) for 1<i <r. Thus, by property (a) of vertex
partition IT*, there exists a permutation matrix P such that PMPT has the block bordered diagonal
form

pMpT = [AT B] 1)
BT D|

5]

Property (b) of vertex partition IT" ensures that each diagonal block of the leading block A is a full
matrix (we assume that the original matrix M has a nonzero main diagonal). We will refer to A as the
block pivot in PMPT.

Without loss of generality, suppose the block pivot A is nonsingular, and let U be the upper Cho-
lesky factor of A. Then the block matrix PMPT can be written in the block product form

uT ol |U X
T _
PMP" = [XT I] [ 0 D_XTX] )




in which I is an identity matrix, the 0’s are zero matrices, and the block X is the solution of the mul-
tiple right-hand side triangular system UTX = B. The matrix D — XTX is the familiar Schur
complement of A in M. Replacing M by PMPT in the original system of equations Mx = b, we obtain
the following equivalent system:

(PMPT)(Px) = (Pb). 3)

Consider this system where PMPT has been factored into the block product form (equation 2) and
the vectors Px and Pb have been partitioned conformably into the direct sums oy and z, and f and h,
respectively. The system of equations (equation 3) then becomes

[g D—iTX] [Z] = [h—)vaw] (4)

J -
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where w is the solution of the lower triangular system UTw = f. The zero-nonzero structure of the
Cholesky factor U in equation 4 serves to illustrate the point that all r diagonal blocks of A can be
factored in parallel, and that block X can be computed from UTX = B by solving r triangular systems
with multiple right-hand sides in parallel.

If the Schur complement D — XTX in equation 4 is dense, the solution of Mx = b is obtained by
solving the two systems of equations (D — XTX)z = h — XTw and Uy = w — Xz in that order, and set-
ting x = PT[y z]T. However, in many industrial sparse matrix applications, the Schur complement D —
XTX is generally sparse and large. Therefore, to deal with the most general case, we need an algo-
rithm that recursively uses the four-stage parallelization tool until the symbolic form of the Schur
complement D — XTX is either full or dense. In the Algol-like language adopted by Aho, Hopcroft,
and Ullman (1976), the new sparse matrix ordering algorithm takes the following form:

procedure parallel_ordering:
while G is not a clique do
begin
search;
if S is not empty then
dfs
else
cliques(V)
end;
comment we now have vertex partition IT or block pivot A in PMPT;
sfp;
comment procedure sfp computes symbolic form A of D — XTX;
replace G = (V, E) by graph of A
end

Procedure search computes the set of vertices S. If S is empty, we call procedure cliques(V) to
compute independent cliques in G. If S is not empty, we call procedure dfs (depth-first search) to
compute the connected components of induced subgraph G(V - S). For each connected component
G(U) of G(V - S), dfs invokes a procedure called classify(U) to analyze G(U). If G(U) is a clique,
then the set of vertices U is a leaf element of vertex partition IT*. If G(U) is not a clique, then




procedure classify(U) calls cliques(U) to compute independent cliques in G(U). For each indepen-
dent clique G(U’) in G(U), the set of vertices U’ is a leaf element of vertex partition IT*. At the
completion of procedure dfs, the computation of vertex partition IT* or block pivot A in PMPT is
complete. Subsequently, we call procedure sfp (symbolic factorization procedure) to compute the
symbolic form A of the Schur complement D — XTX. The symbolic form of block X in equation 2 is
computed in procedure classify. Finally, we set G to the graph of the symbolic Schur complement
and repeat the above steps until G is a clique. In practice, the recursion in the parallel ordering algo-
rithm may be terminated when the Schur complement becomes very dense.

5. IMPLEMENTATION OF THE PARALLEL ORDERING ALGORITHM

In this section, we give detailed descriptions of five procedures used in the parallel ordering algo-
rithm.

5.1 COMPUTING THE SET OF VERTICES S

We use procedure search to compute the vertex set S in linear time by visiting the vertices and
edges of a graph G = (V, E) as follows. We select and visit a vertex v. Then, for each vertex w adja-
cent to v, we do the following. If w has been visited previously, we pick another vertex adjacent to v.
If w has not been visited previously, we compare the degrees of vertices v and w. If deggv = deggw,
we pick another vertex adjacent to v. If deggv # deggw, then the vertex with the strictly larger degree
is marked as the vertex belonging to the set S. This process is continued until all vertices in V have
been visited. At the completion of procedure search, all vertices in S are marked “old” and all ver-
tices in V — S are marked “new.” An implementation of procedure search can be found in Kevorkian
(1993).

We conclude this subsection with another key property of the vertex set S that shows that the
induced subgraph G(V — S) not only contains all interior cliques of G but also all cliques whose ver-
tices have minimum degree in G.

Lemma 2. Let G(U) be any clique in G = (V, E) such that deg 5 u = 8(V) for all u € U. Then, G(U)
is a clique in G(V - S).

Proof. Let u be any vertex in U. Then deggu = 8(V), and so for any edge (u, v) incident with u we
have deggu < deggv. Thus u ¢ S, and the proof is complete.

5.2 COMPUTING CONNECTED COMPONENTS OF G(V - S)

Procedure dfs uses the linear-time depth-first search method (Aho, Hopcraft, & Ullman, 1976; Tar-
jan, 1972) to compute all connected components of induced subgraph G(V — S). For each vertex v in
V — S marked “new,” dfs calls a recursive procedure component(v) to compute a connected compo-
nent G(U) of G(V — S). The entire algorithm is given below. Since dfs is called immediately after
search, all vertices in V — S are marked “new,” and all vertices in S are marked “old” at start of dfs.




procedure dfs:
for allvin V do
if v is marked “new” then
begin
mark v “old”;
U« {v};
REU « 0;
NGU « empty;
component(v);
classify(U)
end
procedure component(v):
for each vertex w adjacent to v do
if wisin V-S then
begin
REU « REU + 1;
if w is marked “new” then
begin
mark w “old”;
add w to U;
component(w)
end
end
else
if w is not on NGU then add w to NGU

The integer REU keeps count of each edge whose two end points are in the set U, and so on
completion of connected component G(U) we get REU = 2 x [E(U)I since the depth-first search
method visits each edge of G exactly twice (Aho, Hopcraft, & Ullman, 1976). 1 hus, a connected
component G(U) of G(V - S) is a clique if and only if the integer REU satisfies the following equal-

1ty
REU = [Ul x (IU1 - 1) 5)

since a clique with IUI vertices has Ul x (Ul — 1)/2 edges. This simple algebraic relation will be used
later to categorize all connected components of G(V — S) into cliques and noncliques.

While computing the connected component G(U), dfs also computes a set of vertices NgU defined
by

NgU={we V-Ulwis adjacent to a vertex in U}.

We will refer to the set of vertices NgU as the neighborhood of G(U) in G. The single array NGU
computed in component(v) stores the neighborhood of each connected component of G(V — S) one at
a time.

5.3 CLASSIFYING THE CLIQUES IN G(V - S)

Upon completion of connected component G(U) in dfs, procedure classify(U) is called for further
analysis of G(U). If G(U) is a clique, then U is a leaf element of vertex partition IT". If G(U) is not a
clique, procedure cliques(U) is called in classify(U) to compute independent cliques in G(U). For




each independent clique G(U’) in G(U), U’ is a leaf element of vertex partition IT*. Each leaf element
of every vertex partition computed in parallel_ordering is placed on a single array VP in the order
they get computed. At completion of paralle]l_ordering, the array VP together with the end element
S* of the final vertex partition provide the ordering generated by parallel_ordering.

For each connected component G(U) of G(V — S) that is a clique, procedure classify(U) catego-
rizes G(U) so that the symbolic factorization of the block pivot A is facilitated. The basic methodol-
ogy involved in the classification is covered next.

Let G(U) be any clique in the induced subgraph G(V — S). Then the following two conditions are
of interest in the symbolic factorization of block pivot A in PMPT,

(a) Foranyu e U, adjcun S =NgU,
(b) Subgraph induced by NgU is a clique.

By conditions (a) and (b), every connected component G(U) of G(V — S) that is a clique must be
one of four distinct types. These are:

Type Cy: G(U) satisfies (a) and (b);

Type C,: G(U) satisfies (a) and not (b);
Type Cs: G(U) satisfies (b) and not (a);
Type C4: G(U) satisfies neither (a) nor (b).

The next series of results provides properties we use in computing the symbolic forms of block X
and the Schur complement D — XTX.

Lemma 3. For any connected component G(U) of G(V - S), G(U) is an interior clique if and only
if G(U) is a type C; clique.

Proof. Suppose G(U) is an interior clique. Then there exists in G a clique G(C) with U ¢ C such
that any vertex u in U is adjacent to all other vertices in C. Thus we get adjcu = C — {u}, which gives
us adjgu = (NgU u U) - {u} since C consists of the two disjunct sets U and NgU. But since clique
G(U) is a connected component of G(V — S), we have adjgu n (V=S) = U — {u}. Therefore, we get
adjgu N S = NgU, which is condition (a). Condition (b) holds since G(C) is a clique and NgC < C.
Hence, any interior clique in G is a type C; clique.

Suppose G(U) is a type C; clique. Let C = U u NgU. Then, by conditions (a) and (b), G(C) is a
clique. Also, by condition (a), we have deggu = Ul — 1 for any u € U. Thus, we get U = int(C), and
so G(U) is an interior clique. This completes the proof.

In view of Lemma 3, we call type C; and type C, cliques semi-interior, while a strictly type C,
clique is called strictly semi-interior.

Lemma 4. For any connected component G(U) of G(V - S), G(U) is a semi-interior clique if and
only if the following equality holds:

degg v=INgUI + Ul -1, forany ve U. (6)

Proof. If clique G(U) is semi-interior, condition (a) holds, and so for any v e U we get ladjgu n S|
= [NgUI. Also, we have ladjcu n (V — S) = [Ul — 1 since G(U) is a clique and a connected component
of G(V - S). Combining these two equalites gives relation 6. Suppose relation 6 holds. Then, for any
u e U, we have ladjgul = INgUI + IU — {u}l. But since G(U) is a connected component of G(V —S),
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no subset of U is in S, and so we obtain ladjgu n S| = INgUI. Hence, condition (a) holds, which
means that G(U) is a semi-interior clique. This completes the proof.

Lemma 5. Let G(U) be any semi-interior clique in G(V — S). Then, for any v in U, the following
two statements hold.

(i) defgv={(u,w)lu,weNgU, (u,w)e E,u=w}.
(ii) The graph (NgU, E(NgU) U def 5 v) is a clique.

Proof. Let u and w be any two distinct vertices in adjgv. Then each of the vertices u and w is either
in U or NgU. If both u and w are in U, then we have (u, w) € E since G(U) is a clique. If uis in U
and w is in NgU, then by condition (a) we get (u, w) e E. Thus, the pair (u, w) can never be an edge
in defgu if either u or w is in U. Hence, both u and w must be in NgU if (u, w) is an edge in defgv.
This completes the proof for statement (i). Combining statement (i) and condition (a) yields state-
ment (ii). This completes the proof.

Procedure classify(U) employs Lemma 4 and Lemma 5 to simplify the symbolic factorization of
block pivot A in PMPT. To highlight this, let us first assume that G(U) is a semi-interior clique. Also,
let G(U) be the graph of the ith diagonal block A in block pivot A. Then, by statement (i) of
Lemma 5, the symbolic factorization of A; does not produce any fill-in in block X since both end
points of any edge in defgv represent two distinct rows of the Schur complement D — XTX. Further-
more, by statement (ii) of Lemma 5, the symbolic factorization of any single row of block A; gener-
ates all the fill-ins produced by the symbolic factorization of the entire block A;. Therefore, to com-
pute the fill-ins generated by the symbolic factorization of block A;, we can choose any vertex u in U
and ignore all other vertices in U — {u} and all edges incident with each of the vertices in U — {u}.

Suppose the clique G(U) is not semi-interior. Then the symbolic factorization of block A; may pro-
duce fill-ins in block X. To compute the symbolic form of block X, classify(U) invokes a procedure
called xfills(U). The entire procedure xfills is given below. We use a Boolean airay TEST setting
TEST(x) = false at the start of procedure xfills if and only if vertex x is in V — U. Also, we use the
Matlab colon notation (The Mathworks, 1990) to let U = U(1:IUl) and let U(i) designate the ith ele-
ment of U.

procedure xfills(U):
fori« 1 until Ul -1do
for each vertex x adjacent to U(i) do
if TEST(x) is false then
begin
TEST(x) « true;
for each vertex y on U(i + 1: [Ul) do
add x to the adjacency of y;
add end vertex on U to adjacency of x
end
end

The general step in procedure xfills is as follows. Let u = U(i) and let y be any vertex on U(i+1:
[Ul) fori=1, ..., 1Ul-1. Theny is adjacent to u since G(U) is a clique, and so for any vertex x in V
— U adjacent to u we have (x, y) € defgu U E. Thus, for each vertex y on U(i+1:IUl), (x, y) is either
an edge in E or a vertex pair corresponding to a fill-in in block X. Suppose TEST(x) = true at the start
of the ith iteration of the main for loop. Then, by the initialization of array TEST, vertex x must be
adjacent to a vertex in U(1: i — 1), and so the pair (X, y) has already been accounted for in a previous
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iteration of the main for loop. Suppose TEST(x) = false. Then the following three steps are carried
out. First, TEST(x) is set true so that the pair (X, y) is not considered further. Second, the symbolic
form of X is updated by adding x to the adjacency of each vertex on U(i + 1: [Ul). Third, among all
the vertices on U(i + 1: IUl), we only add the end vertex on U to the adjacency of x. This step is done
to facilitate the application of procedure sfp. It is important to note that the updates of the adjacencies
of vertices x and y in xfills may give rise to duplicate edges. However, in practice we use a more
detailed version of xfills that avoids duplicate edges without affecting its time complexity.

At the completion of procedure xfills(U), the end vertex on U is adjacent to all vertices in NgU.
Thus, the end vertex on U satisfies statement (ii) of Lemma 5 at the completion of xfills, and so the
symbolic factorization of the single row of block A; corresponding to the end vertex on U will gener-
ate all the fill-ins in D — XTX produced by the factorization of the entire block A;. In subsequent
developments, we call a vertex u in any clique G(U) a “vertex of choice” if the symbolic factoriza-
tion of the single row of A; corresponding to u generates all the fill-ins in D — XTX produced by the
symbolic factorization of the entire block A;.

The entire procedure classify(U) is given below. We use a Boolean array VOC, setting VOC(y) to
true if and only if y is a vertex of choice. If G(U) is not a clique, then cliques(U) is called to compute
independent cliques in G(U). Suppose G(U) is a clique. Then the vertex set U is a leaf element of the
vertex partition IT*, and so U is placed on array VP. If clique G(U) is not semi-interior, procedure
xfills(U) is called to compute the symbolic form of block X. Subsequently, the end vertex on U
becomes a vertex of choice in G(U). If clique G(U) is semi-interior, then procedure xfills(U) is
skipped since no fill-ins are produced in block X. Next, the end vertex on U is chosen as vertex of
choice. We assume that the array VP is empty and Boolean array VOC is set false at the start of the
parallel ordering algorithm.

procedure classify(U):
if REU = [Ul x (Ul — 1) then
begin
comment G(U) is a clique;
add U to VP;
if deggv # INGUI + [Ul — 1 then xfills(U);
VOCU(IUI)) « true;
comment end vertex on U is vertex of choice
end
else
cliques(U)
end
The concept of a semi-interior clique is closely related to a notion widely use in the literature. To
establish this connection, let G(U) be any semi-interior clique in G(V — S). Then, by condition (a),
any two vertices x and y in the set U satisfy the equality

{x}uvadigx={y } Uadjgy.

Vertices satisfying this equality are called “indistinguishable” vertices in G (George & Liu, 1989).
Thus, for any semi-interior clique G(U) in G, all vertices of G(U) are indistinguishable. If clique
G(U) is not semi-interior, then there must exist in U at least two distinct vertices x and y that are not
indistinguishable.

An important feature of indistinguishable vertices relates to the merging of these vertices together
as one vertex called a supernode (George & Liu, 1981, 1989). This way, a supernode becomes a
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“representative” (George & Liu, 1989) in the group of indistiguishable vertices. In our parallel order-
ing algorithm, a vertex of choice plays the same role as a supernode does, although no merging of
vertices is required in our formulation. Also, in the case where all the vertices in a clique G(U) are
not indistinguishable, the approach we have followed to do symbolic factorization allows us to trans-
form a vertex in a nonsemi-interior clique into a vertex of choice.

5.4 COMPUTING INDEPENDENT CLIQUES IN G(V - S)

For any nonclique connected component G(U) of G(V — S), we use procedure cliques(U) to com-
pute independent cliques in G(U). For each independent clique G(W) computed in cliques, we place
W on array VP and call procedure xfills(W) to compute the fill-ins in block X. The entire procedure
is given below. At the completion of the call to xfills(W), the end vertex on W becomes a vertex of
choice. We assume all vertices in U are marked “new” at the invocation of cliques(U).

procedure cliques(U):
while there is a vertex in U marked “new” do
begin
compute a maximal clique G(W) in G(U) with all u e W marked “new”;
add W to VP;
xfills(W);
mark all vertices in W and NgW “‘old”;
add NgW to S;
VOCU(WI) « true
end

Let G(W) be any maximal clique computed in cliques(U). Since all vertices in W and NgW are
marked “old” at the completion of each iteration of the while loop, no vertex of any maximal clique
computed thereafter in procedure cliques(U) is adjacent to a vertex of G(W). Thus, all maximal
cliques computed at the completion of procedure cliques(U) are independent. All vertices in G(U)
that are not in any independent clique computed in cliques(U) are added to the set of vertices S
constructed earlier in procedure search. Thus, if S’ denotes the set of all vertices added to the set S in
cliques(U) at the completion of the four-stage parallelization tool, then we have S U S’ = S*, where
S* is the end element of vertex partition IT".

5.5 COMPUTING THE SYMBOLIC SCHUR COMPLEMENT
Let G = (V, E) be the undirected graph of any sparse symmetric matrix M and let

H* = (Vla V29 AR ] VI" S*)

be the vertex partition obtained by applying algorithm parallel_ordering to matrix M. Then, by the
construction of the block bordered diagonal matrix PMPT in equation 1, each vertex in the set S* rep-
resents a row of the square diagonal block D in PMPT. Thus, assuming no lucky cancellation of non-
zero elements, the undirected graph of the Schur complement D — XTX consists of the pair G* = (S,
E*) where E(S™) corresponds to the nonzero off-diagonal entries in block D, while each edge in the
set E* — E(S™) corresponds to a fill-in produced in D — XTX.

The first graph-theoretic characterization of Cholesky factorization is due to Parter (1961). Subse-
quently, George and Liu (1981) gave a graph-theoretic charcterization of block Cholesky factoriza-
tion using the notion of reachable sets. Using the block product form of PMPT in equation 2, the
reachable set for any vertex v in the set S* in G can be defined as the set of vertices given by
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Reach(v, V-S*) = {we S$*| 3 a path from v to w containing only v, w, and vertices in V-S*}.

For the graph G* = (S*, E*) of the Schur complement D — XTX, the main property of the reachable set
states (George & Liu, 1981) that

adj g+ v = Reach(v, V - §%) forany vin S*. (7)

In other words, for any vertex w in Reach(v, V — S%), the pair (v, w) is either an edge of the original
graph G or an edge corresponding to a fill-in in the Schur complement D — XTX. It is easy to see that
George and Liu’s relation (7) is a generalization of Parter’s original characterization of Cholesky fac-
torization (Parter, 1961).

As pointed out in George and Liu (1981), the work required to compute reachable sets can be
excessively large, especially for the case where IV — S| is large. To overcome this drawback, George
and Liu (1981) introduce the quotient graph model, where supernodes are used in the process of
elimination. Using this strategy, the work done in computing reachable sets is reduced dramatically
by limiting the lengths of paths required to compute reachable sets to one or two.

In the rest of this section, we give another simple result that makes use of the vertices of choice to
characterize the adjacency of each vertex of the graph of the Schur complement D — X™X in terms of
the adjacencies in the original graph G = (V, E).

For any vertex v in the set of vertices S*, let ¥(v) be the set of vertices in G defined by
Yv)={ue V-S*lue adjgv and VOC(u) = true}.
Thus, for any vertex v in S*, ¥(v) comprises all vertices of choice that are adjacent to v in G.

Lemma 6. Let G* = (S*, E¥) be the graph of the Schur complement D — XTX. Then, for any vertex
v in S*, the following relation holds.

adjg*v = (adjgv) U (U (adjgu N S*) - {v}).
ue¥(v)

Proof. Let (v, w) be any edge in E*. If (v, w) is in E, then w is adjacent to v in G, and so the lemma
holds since adjgv c adjg+v. Suppose (v, w) is not in E. Then there is a path from v to w containing
only v, w, and vertices in V — S*. Let x and y be the vertices in V — S* adjacent to v and w, respec-
tively. Since each connected component of G(V — S*) is a clique, there exists in G(V — S¥) a clique
G(U) containing vertices x and y. By construction of procedures classify and cl*‘ques, each connected
component of G(V - S*) contains a vertex of choice. Let u be the vertex of choice in G(U). Then
both v and w are adjacent to u since v and w are in the neighborhood NgU of U. Thus, u is in ¥(v)
and w is in adjgu, which means that w is in adjg«v. This completes the proof.

We present an implementation of procedure sfp that uses Lemma 6 to compute the symbolic form
of the Schur complement in time proportional to VI + |El + IE* — E(S*)I. The entire procedure sfp is
given below. The vertex set S at the start of procedure sfp is the same as the set S* in Lemma 6. We
use the Boolean array TEST in sfp to avoid duplicates of the edges corresponding to the fill-ins in D
— XTX. We assume that array TEST is set to false at the start of procedire sfp.
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procedure sfp:
for each vertex vin S do
begin
set W(v) to empty;
for each vertex u adjacent to v do
if uisin S then TEST(u) « true;
else
begin
delete u from adjacency of v;
if VOC(u) = true then add u to ¥(v)
end;
comment computation of ¥(v) is complete;
reach(v)
end

procedure reach(v):
begin
TEST(v) « true;
U« [v];
for each vertex u on ¥(v) do
for each vertex x adjacent to u do
if x isin S then
if TEST(x) = false then
begin
comment (v, x) corresponds to a fill-in;
add x to adjacency of v;
add v to adjacency of x;
TEST(x) « true;
addxtoU
end;
else
delete x from adjacency of u;
for each x on U do TEST(x) « false
end

For each vertex v in S, procedure sfp carries out the following general step to compute the set
¥(v). Let u be any vertex adjacent to v. If u is in S, then u is not a vertex of choice since all vertices
of choice are in V — S. Consequently, we use the Boolean array TEST to mark u true so that the edge
(v, u) in E is not mistaken for an edge in E* — E(S™). Suppose u is not in S. Then we delete u from the
adjacency of v since the vertices in V — S are not required in subsequent iterations of the while loop
in the new ordering algorithm. Subsequently, we test if u is a vertex of choice. If the test holds, we
add u to the set W(v). The application of this step to all vertices adjacent to v completes the computa-
tion of the set ¥(v).

On the completion of set ¥(v), we call procedure reach(v) to compute the fill-ins produced in D —
XTX by the factorization of the row of M corresponding to vertex v. The general step in procedure
reach(v) is as follows. First, we mark TEST(v) true to exclude vertex v from the set of vertices
adjg+v defined in Lemma 6. Next, we initialize the set U to [v]. The main purpose of the set U is to
help reset the Boolean array TEST to false at the completion of reach(v). For each vertex u on ¥(v),
we visit every vertex x adjacent to u. If vertex x is not in S, then the pair (v, x) cannot be an edge
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of G*. At this point, we complete the visit at vertex x by deleting x from the adjacency of u so that at
the next visit to vertex of choice u in reach(v), the edge (u, x) is not visited again. Suppose x is in the
set S. Then we proceed with the evaluation of the condition TEST(x) = false. If TEST(x) = false,
then by Lemma 6 the edge (v, x) corresponds to a fill-in in the Schur complement D — XTX. As a
result, we add x to the adjacency of v, and v to the adjacency of x. Also, we set TEST(x) = true to
avoid duplicate edges in the edge set E*. If TEST(x) = false, then (v, x) is an edge in E* and so we
visit the next vertex of choice on ¥(v). After all vertices of choice on ¥(v) have been visited, TEST
is reset to false using array U. Subsequently, reach(v) returns to procedure sfp. This completes the
computation of the symbolic form of the Schur complement.

We complete our analysis by showing that procedure sfp requires time proportional to IVI + [El +
IE* — E(S™)I. For each vertex vin S c V, sfp constructs ¥(v) by visiting each edge incident with v
exactly once. Thus the total work done in sfp, excluding all calls to procedure reach, is proportional
to IVl + [El. Let u be any vertex on ¥(v), and let x be any vertex in V adjacent to u. If x is notin S,
then the edge (u, x) is visited once in sfp since x is deleted from adjacency of u in reach(v). Suppose
the vertex x is in S. Then TEST(x) is either true or false. If TEST(x) = true, then (v, X) is an edge in
E(S™). If TEST(x) = false, then (v, x) is an edge in E* — E(S*), or equivalently, (v, x) is an edge corre-
sponding to a fill-in in the Schur complement D — XTX. Thus for each edge (v, u) incident with a ver-
tex v in S and a vertex of choice u, procedure reach traverses a path (v, u, x) of length 2 where (v, x)
is an edge either in E(S*) c E or in E* — E(S”). Hence, the total work done in sfp is proportional to [VI
+ |[El + [E* — E(S™)I.

6. COMPUTATIONAL RESULTS, COMPARISONS, AND COMPLEXITY

In this section, we evaluate the new parallel ordering algorithm and compare it with two com-
monly used ordering methods implemented in Matlab (The Mathworks, 1990). These are the mini-
mum degree method and the reverse Cuthill-McKee band reduction method (George & Liu, 1981).
The Matlab implementation of the minimum degree ordering incorporates many of the latest devel-
opments of minimum degree as well as ideas for enhancing parallel sparse matrix factorizations (Gil-
bert, Molor, & Schreiber, 1992). The reverse Cuthill-McKee was included in the evaluation since the
benchmark contained banded matrices. The benchmark for the comparisons comprised a set of 21
sparse symmetric matrices drawn from applications of linear and quadratic programming to indus-
trial problems (Gill et al., 1991, 1992; Saunders, private communication, 1992-1993) and from the
Harwell-Boeing sparse matrix collection (Duff, Grimes, & Lewis, 19€9).

Table 1 summarizes the results for the sparse matrices from linear and quadratic programming
applications. The heading Identifier/n/nz in the first column of table 1 refers to the name of the spe-
cific application, the order of the sparse symmetric matrix M, and the number of nonzeros in M,
respectively. The second column (Method) includes the Matlab minimum degree method (mmd), the
Matlab Reverse Cuthill-McKee method (rcm), and the new parallel ordering algorithm (pal). The
third column (Nz) gives the total number of nonzero entries in RT + R, where R is the upper Cho-
lesky factor of PMPT. The fourth column (Fill-In) gives the number of fill-ins created in the upper
Cholesky factor R by each of the three methods (rcm, mmd, and pal). The fifth and last column gives
the elimination tree height for each of the three methods.

For the second through tenth problems in table 1, the new ordering algorithm performs better than
the minimum degree and Reverse-Cuthill methods in the number of fill-ins. It also performs better
than the minimum degree method in computing elimination trees with smaller heights. It is worth
noting that for problem scfxml, the height of the elimination tree of the Cholesky factor computed

16




by the new ordering method is about 65 percent of the elimination tree height computed by the mini-
mum degree method. Figures 2 and 3 illustrate the zero-nonzero structures of RT+ R for scfxm1 and
shell.

Table 1. Examples from linear and quadratic programming applications.

Nz Fill-In Elimination Tree
Identifier/N/Nz Method (RT+R) (R) Height

share1b/117/1885 rcm 3360 796 71
mmd 2538 385 43

pal 2737 426 46

israel/214/5682 rcm 25574 9946 187
mmd 7234 776 60

pal 7168 743 57

brandy/255/5273 rem . 18767 6747 160
mmd 8893 1810 80

pal 8835 1781 78

bandm/320/6848 rcm 21134 7143 242
mmd 10848 2000 73

pal 9180 1166 65

scfxm1/473/5613 rem 22463 8425 306
mmd 15083 4735 105

pal 11409 2898 68

seba/529/7639 rcm 69157 30759 281
mmd 9003 682 43

pal 8851 606 32

fffff800/616/16446 rcm 160038 71796 482
mmd 35638 9596 137

pal 34922 9238 132

shell/651/3809 rcm 19435 7813 234
mmd 8925 2558 75

pal 8519 2355 58

pilot/1129/10733 rcm 151817 70522 751
mmd 43181 16204 152

pal 37451 13339 142

25fv47/1301/22307 rcm 253359 115526 807
mmd 102797 40245 265

pal 83501 30597 232

Table 2 summarizes the results for 11 problems taken from the Harwell-Boeing sparse matrix
collection. These problems were drawn from five distinct application areas. These are reservoir mod-
eling (pores_2 and pores_3); finite element approximations to structural engineering problems (nos1
and nos5); aircraft design problems (can_292, can_1054, and can_1072); structural engineering
matrices from the aerospace industry (besstk19 and besstk20); and power systems admittance
matrices (685_bus and 1138_bus). The fill-ins produced in the Cholesky factor R of PMPT were vali-
dated by applying the Matlab symbolic factorization utility “symbfact” to M(P, P) for each matrix M
considered in tables 1 and 2.
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Among the three methods considered in table 2, the parallel ordering algorithm pal computes Cho-
lesky factors with smaller elimination tree heights for 10 problems. For problems nos1 and bcsstk20,
the elimination tree heights computed by the parallel ordering algorithm are more than 62 percent
smaller than the elimination tree heights computed by the next best method, which is mmd. With
regard to the number of fill-ins, the parallel ordering algorithm performs better for six problems, the
minimum degree method for three problems, and the Reverse Cuthill-McKee for two problems. Fig-
ures 4 and 5 illustrate the zero—nonzero structures of RT + R for pores_3 and 685_bus.

Table 2. Examples from Harwell-Boeing sparse matrix collection.

Identifier/N/Nz
pores_3/532/3054

pores_2/1224/9992

nos1/237/1017

nos5/468/5172

can_292/292/2540

can_1054/1054/12196

can_1072/1072/12444

becsstk20/485/3135

bcsstk19/817/6853

685_bus/685/3249

1138_bus/1138/4054

Method

rcm
mmd
pal

rem
mmd
pal

rcm
mmd
pal

rcm
mmd
pal

rcm
mmd
pal

rcm
mmd
pal

rcm
mmd
pal
rcm
mmd
pal
rem
mmd
pal
rcm
mmd
pal
rcm
mmd
pal

Nz
(RT+R)

7648
6908
6506

110954
53366
51822

1117
1577
1941

46608
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Figure 4. Sparsity structure of RT+R for problem pores_3.
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Problem nos1 in table 2 is an interesting case since it captures the best and worst performances of
the parallel ordering algorithm pal relative to the minimum degree method. This problem comprises
a banded matrix (Duff, Grimes, & Lewis, 1989) with very small bandwidth, and so we can explain
the performance of pal by considering an n-by-n tridiagonal matrix M with n> 6. Let G = (V, E) be
the undirected graph of M. Then, at the completion of procedure search, we have S = {v;, v4_1}, and
so the induced subgraph G(V - S) at the completion of search consists of three connected compo-
nents, which are G({v1}), G({Vvxa}), and G(U), where U = {v3, ..., vp2). Since n 2 6, G(U) is a path
with length > 1, and so procedure cliques(U) is called to compute independent cliques in G(U).
Assuming the vertices Vs, ... , vy in U are visited in that order, the first independent clique com-
puted in G(U) is G(W), where W = {v3, v4;. Procedure cliques(U) marks v4 as the vertex of choice in
G(W) since v, is the last vertex visited in the process of computing G(W). Also, vertex vsis added to
the set S since vsis adjacent to a vertex in W. Now, since vertex v3in W is adjacent to vertex v,in S
and (v4, v,) € E, the call to xfills(W) in cliques(U) produces the fill-in corresponding to the pair (va,
V,). Also, the call to procedure sfp at the completion of dfs produces the fill-in corresponding to the
pair (v,, vs) since NgW = {vy, vs} and (v, vs) ¢ E. Thus, for each independent clique of size 2 com-
puted in G(U), exactly two fill-ins are produced in the Cholesky factor at the completion of proce-
dure sfp. For the case where n is a multiple of 3, a simple analysis shows that IS*| = n/3 and that G(V
— S*) consists of n/3 — 1 cliques of size 2 and two interior cliques of size 1. Thus, at the completion
of the first pass of the while loop, the size of the Schur complement is n/3, while the total number of
fill-ins produced in the Cholesky factor is 2(n/3 — 1). Hence, using the parallel urdering algorithm
pal, the height of the elimination tree is proportional to logzn which is much shorter than the height
log,n obtained using the even—odd reduction (nested dissection) scheme.

Next we analyze the time complexity of the parallel ordering alggorithm. Procedure search com-
putes the set of vertices S in time proportional to VI + [El since each vertex in V is visited once and
each edge in E is visited twice. Excluding the call to classify, the total time spent in dfs is propor-
tional to [V| + [El since dfs uses the depth-first search method (Tarjan, 1972) for computing the con-
nected components of the induced subgraph G(V — S). For each connected component G(U) of G(V
- S) that is not a clique, procedure cliques(U) computes independent cl.ques in G(U) in time propor-
tional to [Ul + [E(U)I . For each independent clique G(W) of G(U), xfiils(W) updates the symbolic
form of block X in time proportional to [WI + IE(W)I + v(W), where v(W) is the number of fill-ins
produced in block X by the factorization of a submatrix of A corresponding to clique G(W). Also,
we know that procedure sfp requires time proportional to IVl + [El + | E*I — E(S")I, and so the time
spent in the first iteration of the while loop is proprtional to IVI + [El + v(V — S§*), where v(V - §¥) is
the total number of fill-ins produced by the symbolic factorization of pivot block A. Upon the
completion of the first iteration of the while loop, vertex set V and edge set E are replaced by S* and
E", respectively, and the process is repeated. Thus, for small number of iterations of the while loop,
the new ordering algorithm computes an ordering P and the symbolic Cholesky factor of PMPT in
time comparable to the best of commonly used methods.

In the rest of this section, we present computational results obtained from the application of the
new ordering algorithm to the 21 problems listed in tables 1 and 2. Since the Schur complement D —
XTX plays a central role in the parallel ordering algorithm pal, we first highlight the behavior of D —
XTX at various iterations of the algorithm. Table 3 gives the size of the Schur complement in per-
centage of the size of the original matrix at each iteration of the while loop for all 21 problems. The
iteration number corresponding to the last nonzero entry in each row defines the specific iteration at
which the Schur complement becomes full for that problem. Thus, for problem seba in table 3, the
Schur complement is full at the completion of the seventh iteration. Also, note that the size of the full
Schur complement for seba is about 2 percent ofthe size of the original matrix at completion. For the
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1138-by-1138 matrix in problem 1138_bus, the size of the Schur complement is about 1 percent of
the size of the original matrix. It is worth noting that for 15 of the 21 problems in table 3, the size of
the Schur complement is less than 10 percent of the size of the corresponding original matrix.

Table 3. Size of Schur complement in percentage of original matrix size.

Identifier Iteration number in parallel_ordering
i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 besstk20 36 15 8 4 2
2 nosi 54 25 9 3 1
3 seba 26 14 10 56 4 3 2
4 israel 59 46 35 28 26 23 22
5 shareib 77 61 44 33 31 23 17
6 can_292 65 47 39 33 29 19 16 10 8 6
7 brandy 53 44 39 36 33 30 30 29 27 26 20
8 685_bus 54 37 28 22 19 15 12 8 6 4 3 2
9 bandm 61 47 36 32 30 29 27 23 21 16 13 11
10 scfxmi 65 45 39 33 28 26 25 23 19 15 9 6
11 1138_bus 4 20 1 7 5 4 3 3 2
12 pores_3 57 36 28 21 16 14 13 11 9 8 5
13 besstk19 64 54 45 41 38 31 29 24 20 14 10 7 8
14 fffff800 69 56 48 41 32 30 26 25 23 21 18 17 15
15 shell 47 31 24 19 16 14 13 12 10 9 9 8 8 4

16 can_1054 65 54 44 39 34 28 25 23 21 17 13 9 8 8
17 can_1072 65 53 44 39 36 31 28 25 23 21 17 14 11 9 3

18 pores_2 57 46 42 38 35 33 31 29 27 26 22 20 16 13 8 5

19 nos5 86 75 67 62 58 56 54 52 47 46 43 39 38 30 29 18

20 pilot 62 45 35 30 28 26 24 23 20 19 17 15 14 13 11 11 8

21 25fv47 63 51 45 40 35 33 31 30 28 27 26 24 22 21 19 15 14 14 12 9 9

Let T(i, j) denote the execution time at completion of jth iteration of the while loop for problem i,
and let T(i, *) denote the overall time required by the new algorithm to compute permutation matrix
P and symbolic Cholesky factor R of PMPT for problem i. Also, let F(i, 1) and F(i, *) designate the
sets of fill-ins produced at completion of the first iteration of the while loop and at completion of the
algorithm, respectively. The first five columns in table 4 give T(i, 1) through T(, 5) in percentage of
the overall time T(i, *), while the sixth column gives the ratio IF(i, 1)/I7(i, *)I for all 21 problems.

Let M be any sparse symmetric matrix and let G = (V, E) be the undirected graph of M. Then, by
the time complexity analysis of the new algorithm, the time spent in the first iteration of the while
loop is proportional to VI + [El + [F(i,1)! for the ith problem. Thus, for the case where IF(i, 1)l is close
to IF(i, 1)I, the first iteration of the while loop has the complexity of an algorithm that computes an
ordering P and the symbolic Cholesky factor R of PMPT in linear time. Consequently, if we let b(i)
designate the least integer greater than or equal to T(i, *)/T(i, 1), then the new algorithm requires at
most b(i) applications of a linear-time algorithm to compute both P and R. Hence, for small values of
b(i), the parallel ordering algorithm pal is comparable to a linear-time algorithm. However, it should
be pointed out that b(i) is a loose upper bound if the ratio [F(i, 1)I/IF(i, *)I is small since the work
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done in the first iteration of the while loop is taken to be comparable to a linear-time algorithm that
accounts for all the fill-ins in F(i, *) and not only F(i, 1). Column 7 in table 4 gives the bound b(i) for
all 21 problems.

Table 4. Execution times at completion of first five iterations in percentage of overall time.

Identifier lteration number IF(i, 1)I/IF(i,*)] b(i)
1 2 3 4 5

1 besstk20 60.55 82.12 89.30 96.60 100 .603 2
2 nost 56.83 77.53 91.91 97.48 100 762 2
3 seba 69.18 83.71 89.94 94.89 97.19 751 2
4 israel 24.62 43.29 58.82 73.07 83.39 642 5
5 sharelb 21.09 44.45 58.89 72.04 82.62 444 5
6 can_292 20.39 39.88 52.30 63.12 71.44 .320 5
7 brandy 15.50 24.53 33.69 42.92 51.50 229 7
8 685_bus 26.78 43.01 54.17 63.33 71.26 288 4
9 bandm 18.31 31.09 42,55 51.15 58.31 148 6
10 scfxmi 15.69 27.45 37.00 47.37 55.82 239 7
11 1138_bus 46.47 66.48 76.65 82.29 85.78 371 3
12 pores_3 28.26 46.90 57.54 68.89 76.30 232 4
13 besstk19 16.90 26.44 35.14 43.53 52.61 286 6
14 800 10.82 21.19 30.77 39.32 48.68 150 10
15 shell 20.58 31.39 38.55 45.29 51.35 208 5
16 can_1054 14.37 2273 31.16 39.01 47.09 205 7
17 can_1072 13.77 21.78 29.45 36.65 43.52 201
18 pores_2 6.62 11.92 16.90 21.20 26.04 .078 16
19 nos5 2.15 492 8.13 11.82 15.90 .098 46
20 pilot 9.08 16.29 23.10 29.56 35.45 133 11
21 25fva7 6.11 10.49 14.72 19.12 23.80 .086 17

The data included in column 7 of table 4 provides a number of worthwhile facts. First, for 16 of
the 21 problems listed in table 4, the upper bound b(i) is less than or equal to 8. Also, for 12 of these
16 problems, IF(i, 1)l is strictly less than IF(i, *)I/2, which suggests that the integer 8 is a loose upper
bound for these 12 problems. Second, for the remaining 5 of the 21 problems in table 4, the ratio [F(i,
DIIFQG, *)l is so small that the upper bounds computed for these problems are extremely loose. For
example, the number of fill-ins computed in the first iteration of the while loop for problems
pores_2, nos5, and 25fv47 is strictly less than 10 percent of the total number of fill-ins, and so the
work done in the first iteration for these problems is much smaller than that required by an algorithm
with time complexity proportional to IVI + [El + IF(i, *)I. Third, the very small amount of work done
in the first iteration of the while loop for problem nosS5 correlates well with the very large Schur
complement reported for nosS in column 1 of table 3. In other words, the little work done in the first
application of the while loop to problem nos5 is a result of the little parallelism identified by the new
algorithm in the original problem. It is interesting to note that this behavior prevails at remaining
iterations up to one before the final application of the while loop to nos5. For problems of this type,
the new algorithm may not be well-suited since little parallelism is disc overed per iteration.
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We conclude our analysis of the 21 problems with a discussion centered on the distribution of
workload associated with a vertex partition computed by the parallel ordering algorithm. An impor-
tant concern in parallel computation is the proper distribution of workload across the processors of a
parallel architecture computer. Let A be the pivot block associated with the vertex partition IT* =
(V1, V2, ..., Vi, S*) computed at a given iteration of the while loop. By construction, A is an r-by-r
block diagonal matrix and so there exists no interprocessor communication between any two tasks
resulting from the factorization of the r full diagonal blocks of A. However, since the vertex partition
algorithm does not provide any control over the granularity of these r parallel tasks, workload imbal-
ance may occur across the processors of a parallel machine. To deal with this workload balance prob-
lem, we describe in (Kevorkian, 1993) a strategy that uses the parameters [Vl through [Vl for
decomposing the full diagonal blocks of A into smaller rectangular blocks.

Our experiments with the 21 problems listed in tables 1 and 2 have shown that for all pivot blocks
constructed at the first seven iterations of the while loop all diagonal blocks ranged from 1 to 11 in
size. For 15 of these 21 problems, the largest diagonal block was a 6-by-6 full matrix. Beyond seven
iterations, the extent of parallelism detected by the new ordering algorithm is very small relative to
the first few iterations. To quantify this observation, let r(i,j) designate the number of parallel tasks
generated at jth iteration of while loop in percentage of the number of parallel tasks generated at the
first iteration for problem i. Figure 6 gives min(r(i,j)), max(r(i,j)), and r(i,j) averaged over all i. By
figure 6, the number of parallel tasks identified in a Schur complement beyond the sixth iteration is
less than 8 percent of the number of parallel tasks in the original problem for all 21 problems consid-
ered in tables 1 and 2.

1 00 T T T T T T T 1
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Iteration number in parallel_ordering algorithm

Figure 6. Number of parallel tasks per iteration in percent of number of
parallel tasks at first iteration.
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7. CONCLUSIONS

For a sparse symmetric matrix M, we have presented an ordering algorithm to compute a permuta-
tion matrix P so that parallelism inherent in M is fully exposed in PMPT. The application of the new
parallel ordering algorithm to a large set of sparse matrices taken from the Harwell-Boeing sparse
matrix collection and industrial linear and quadratic programming problems show that this algorithm
is an effective tool for exposing parallelism in arbitrary sparse symmetric matrices. Our experiments
also show that the new parallel ordering algorithm compares favorably with a highly refined imple-
mentation of the minimum degree method in keeping the number of fill-ins and elimination tree
heights small.
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